Improving imbalanced scientific text classification using sampling strategies and dictionaries
نویسندگان
چکیده
منابع مشابه
Improving imbalanced scientific text classification using sampling strategies and dictionaries
Many real applications have the imbalanced class distribution problem, where one of the classes is represented by a very small number of cases compared to the other classes. One of the systems affected are those related to the recovery and classification of scientific documentation. Sampling strategies such as Oversampling and Subsampling are popular in tackling the problem of class imbalance. ...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملText Sampling and Re-Sampling for Imbalanced Authorship Identification Cases
Authorship identification can be seen as a single-label multi-class text categorization problem. Very often, there are extremely few training texts at least for some of the candidate authors. In this paper, we present methods to handle imbalanced multi-class textual datasets. The main idea is to segment the training texts into sub-samples according to the size of the class. Hence, minority clas...
متن کاملOn strategies for imbalanced text classification using SVM: A comparative study
Many real-world text classification tasks involve imbalanced training examples. The strategies proposed to address the imbalanced classification (e.g., resampling, instance weighting), however, have not been systematically evaluated in the text domain. In this paper, we conduct a comparative study on the effectiveness of these strategies in the context of imbalanced text classification using Su...
متن کاملImproving Company Recognition from Unstructured Text by using Dictionaries
While named entity recognition is a much addressed research topic, recognizing companies in text is of particular difficulty. Company names are extremely heterogeneous in structure, a given company can be referenced in many different ways, their names include person names, locations, acronyms, numbers, and other unusual tokens. Further, instead of using the official company name, quite differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integrative Bioinformatics
سال: 2011
ISSN: 1613-4516
DOI: 10.1515/jib-2011-176